Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 7): 127552, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865373

RESUMO

In the present study, cationic starch (CS)/chitosan (CH) incorporated with tannic acid (TA)(CSCT) eco-friendly films were prepared by employing an inexpensive solvent casting technique. Influence of TA on the physicochemical and antimicrobial properties of CS/CH polymer matrix were studied. The FTIR findings and homogeneous, dense SEM micrographs confirms the effective interaction of TA with CS/CH polymer matrix. CSCT-3 active film displayed tensile strength of 26.99±1.91 MPa, which is more substantial than commercially available polyethylene (PE) (12-16 MPa) films. The active films exhibited excellent barrier properties against moisture and water, supported by increased water contact angle values (86.97±0.29°). Overall migration rate of active films was found to be below the permitted limit of 10mg/dm2. The active films showed around 56% of degradation in soil within 15 days. Besides, the active films showed concurring impact against food borne pathogens like E. coli, S. aureus and C. albicans. The CSCT-3 active film presented 90.83% of antioxidant capacity, demonstrating the effective prevention of food oxidation related deterioration. Ladyfinger packaging was inspected to examine the ability of active films as packaging material resulted in effectively resisting deterioration and extending shelf life in comparison with traditional PE packaging.


Assuntos
Quitosana , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos , Amido/farmacologia , Escherichia coli , Staphylococcus aureus , Taninos/farmacologia , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...